torch.nn.BCELoss用法
torch.nn.BCELoss用法
1. 定义
数学公式为Loss = -w * [p * log(q) + (1-p) * log(1-q)],其中p、q分别为理论标签、实际预测值,w为权重。这里的log对应数学上的ln。
$$ Loss = -w[plog(q)+(1-p)*log(1-q)] $$
PyTorch对应函数为: torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction=‘mean’) 计算目标值和预测值之间的二进制交叉熵损失函数。
有四个可选参数:weight、size_average、reduce、reduction(好像reduce要取消了)
(1) weight必须和target的shape一致,默认为none。定义BCELoss的时候指定即可。
(2) 默认情况下 nn.BCELoss(),reduce = True,size_average = True。
(3) 如果reduce为False,size_average不起作用,返回向量形式的loss。
(4) 如果reduce为True,size_average为True,返回loss的均值,即loss.mean()。
(5) 如果reduce为True,size_average为False,返回loss的和,即loss.sum()。
(6) 如果reduction = ‘none’,直接返回向量形式的 loss。
(7) 如果reduction = ‘sum’,返回loss之和。
(8) 如果reduction = ''elementwise_mean,返回loss的平均值。
(9) 如果reduction = ''mean,返回loss的平均值
2. 验证代码
2.1
import torch
import torch.nn as nn
m = nn.Sigmoid()
loss = nn.BCELoss(size_average=False, reduce=False)
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
lossinput = m(input)
output = loss(lossinput, target)
print("输入值:")
print(lossinput)
print("输出的目标值:")
print(target)
print("计算loss的结果:")
print(output)
UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
tensor([0.8594, 0.3397, 0.3772], grad_fn=<SigmoidBackward>)
输出的目标值:
tensor([1., 1., 1.])
计算loss的结果:
tensor([0.1515, 1.0797, 0.9749], grad_fn=<BinaryCrossEntropyBackward>)
import math
def f(p, q):
w = 1
return -w*(p*math.log(q)+(1-p)*math.log(1-q))
if __name__ == '__main__':
p = [1, 1, 1]
q = [0.8594, 0.3397, 0.3772]
for i in range(3):
loss = f(p[i], q[i])
print(loss)
0.15152080764124226
1.0796924038155988
0.9749797282228346
2.2
import torch
import torch.nn as nn
m = nn.Sigmoid()
loss = nn.BCELoss(size_average=True, reduce=False)
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
lossinput = m(input)
output = loss(lossinput, target)
print("输入值:")
print(lossinput)
print("输出的目标值:")
print(target)
print("计算loss的结果:")
print(output)
UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
输入值:
tensor([0.3780, 0.4630, 0.2005], grad_fn=<SigmoidBackward>)
输出的目标值:
tensor([1., 0., 0.])
计算loss的结果:
tensor([0.9729, 0.6218, 0.2237], grad_fn=<BinaryCrossEntropyBackward>)
2.3
import torch
import torch.nn as nn
m = nn.Sigmoid()
loss = nn.BCELoss(size_average=True, reduce=True)
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
lossinput = m(input)
output = loss(lossinput, target)
print("输入值:")
print(lossinput)
print("输出的目标值:")
print(target)
print("计算loss的结果:")
print(output)
UserWarning: size_average and reduce args will be deprecated, please use reduction='mean' instead.
warnings.warn(warning.format(ret))
输入值:
tensor([0.3404, 0.8976, 0.2261], grad_fn=<SigmoidBackward>)
输出的目标值:
tensor([1., 0., 1.])
计算loss的结果:
tensor(1.6144, grad_fn=<BinaryCrossEntropyBackward>)
2.4
import torch
import torch.nn as nn
m = nn.Sigmoid()
loss = nn.BCELoss(size_average=False, reduce=True)
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
lossinput = m(input)
output = loss(lossinput, target)
print("输入值:")
print(lossinput)
print("输出的目标值:")
print(target)
print("计算loss的结果:")
print(output)
UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
warnings.warn(warning.format(ret))
输入值:
tensor([0.6045, 0.6022, 0.4022], grad_fn=<SigmoidBackward>)
输出的目标值:
tensor([1., 1., 1.])
计算loss的结果:
tensor(1.9213, grad_fn=<BinaryCrossEntropyBackward>)
2.5
import torch
import torch.nn as nn
m = nn.Sigmoid()
loss = nn.BCELoss(reduction = 'none')
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
lossinput = m(input)
output = loss(lossinput, target)
print("输入值:")
print(lossinput)
print("输出的目标值:")
print(target)
print("计算loss的结果:")
print(output)
输入值:
tensor([0.2534, 0.7657, 0.6084], grad_fn=<SigmoidBackward>)
输出的目标值:
tensor([0., 0., 0.])
计算loss的结果:
tensor([0.2922, 1.4513, 0.9375], grad_fn=<BinaryCrossEntropyBackward>)
2.6
import torch
import torch.nn as nn
m = nn.Sigmoid()
weights=torch.randn(3)
loss = nn.BCELoss(weight=weights,size_average=False, reduce=False)
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
lossinput = m(input)
output = loss(lossinput, target)
print("输入值:")
print(lossinput)
print("输出的目标值:")
print(target)
print("权重值")
print(weights)
print("计算loss的结果:")
print(output)
输入值:
tensor([0.1604, 0.4188, 0.4425], grad_fn=<SigmoidBackward>)
输出的目标值:
tensor([0., 0., 0.])
权重值
tensor([ 1.1217, -0.8692, 0.4580])
计算loss的结果:
tensor([ 0.1962, -0.4717, 0.2677], grad_fn=<BinaryCrossEntropyBackward>)