np.c_和np.r_的用法解析
官方解释链接:https://numpy.org/doc/stable/reference/generated/numpy.r_.html
import numpy as np
a = np.array([[1, 2, 3], [7, 8, 9]])
b = np.array([[4, 5, 6], [1, 2, 3]])
d = np.array([7, 8, 9])
e = np.array([1, 2, 3])
def test_c_():
print("a:")
print(a)
print("b:")
print(b)
c = np.c_[a, b]
print("np.c_[a, b]:")
print(c)
f = np.c_[d, e]
print("d:")
print(d)
print("e:")
print(e)
print("np.c_[d, e]:")
print(f)
def test_r_():
print("a:")
print(a)
print("b:")
print(b)
g = np.r_[a, b]
print("np.r_[a, b]:")
print(g)
print("d:")
print(d)
print("e:")
print(e)
h = np.r_[d, e]
print("np.r_[d, e]:")
print(h)
if __name__ == '__main__':
test_c_()
test_r_()
结果:
a:
[[1 2 3]
[7 8 9]]
b:
[[4 5 6]
[1 2 3]]
np.c_[a, b]:
[[1 2 3 4 5 6]
[7 8 9 1 2 3]]
d:
[7 8 9]
e:
[1 2 3]
np.c_[d, e]:
[[7 1]
[8 2]
[9 3]]
a:
[[1 2 3]
[7 8 9]]
b:
[[4 5 6]
[1 2 3]]
np.r_[a, b]:
[[1 2 3]
[7 8 9]
[4 5 6]
[1 2 3]]
d:
[7 8 9]
e:
[1 2 3]
np.r_[d, e]:
[7 8 9 1 2 3]