pytorch Tensor和tensor的区别
参考博客:https://blog.csdn.net/tfcy694/article/details/85338745
在PyTorch中,Tensor和tensor都能用于生成新的张量:
import torch
if __name__ == '__main__':
Tensor_long = torch.Tensor([1, 2])
Tensor_float = torch.Tensor([1., 2.])
tensor_long = torch.tensor([1, 2])
tensor_float = torch.tensor([1., 2.])
print(Tensor_long)
print(Tensor_float)
print(Tensor_long.dtype)
print(Tensor_float.dtype)
print(tensor_long)
print(tensor_float)
print(tensor_long.dtype)
print(tensor_float.dtype)
结果:
tensor([1., 2.])
tensor([1., 2.])
torch.float32
torch.float32
tensor([1, 2])
tensor([1., 2.])
torch.int64
torch.float32
可以看出Tensor会强制生成float类型的张量。
tensor会根据你的输入值,选则使用int64还是float
torch.Tensor (Python class, in torch.Tensor):https://pytorch.org/docs/stable/tensors.html?highlight=torch%20tensor#torch.Tensor
torch.tensor (Python function, in torch.tensor):https://pytorch.org/docs/stable/generated/torch.tensor.html?highlight=torch%20tensor#torch.tensor